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Abstract

High stochastic variation in mortality is the rule when dealing with small pop-
ulations. Therefore, estimation of mortality age-pattern is often a challenge at
subnational level. However, recognising differences in age-specific mortality among
regions is crucial for an adequate implementation of national health policies and an
objective redistribution of resources. In this paper, we revised the TOPALS rela-
tional model which has proven its usefulness in coping with small areas estimations.
Unlike the original model and its further developments, we embedded TOPALS in
a completely objective estimation procedure in which arguments of the model are
optimized based solely on the data in hands. Choice of the standard, which has how-
ever negligible effects on the outcomes, is motivated by demographic and historical
reasons. A penalized iteratively re-weighted least-squares algorithm is proposed to
estimate the model and performances are assessed on minor administrative divisions
in Chile and Venezuela in 2000.

Keywords: TOPALS model, Mortality estimation; Small areas; Relational model;
Smoothing; Chile, Venezuela.

1



Draft for the ALAP 2018 - Do not circulate or cite 2

1 Introduction

Commonly, sub-national analysis demographic studies uses political-administrative hier-

archies to divide their sub-populations. The assumption behind is that spatial inequalities

are introduced by differences in local policies, or the ability of specific administrative re-

gions to incorporates new technologies or social programs in a faster manner (Bravo and

Malta, 2010; Ferguson et al., 2016). To monitor the effects of public health policies or

simply to prepare long-term sub-national population projections there is a demand for

mortality indicators at sub-national levels. In the process of producing them, Latin Amer-

ican countries are dealing with numerous challenges. On one hand, the existence of large

territories with few population counts and on the other, geographically concentrated low

levels of coverage in their vital statistics systems (Lima and Queiroz, 2014).

During the past decades, several studies in the region have estimated the coverage of

death registration at subnational level (Hill et al., 2009; Lima et al., 2014). Their results

acknowledged how spatial inequalities are no just seen in the mortality patterns but

within the scope of the vital statistics systems (Freire et al., 2015). However, few studies

have focused on estimating age patterns. Most of existing ones make rigid mathematical

assumptions relaying on a larger surrounding administrative area pattern (Queiroz et al.,

2013; Schmertmann and Gonzaga, 2016).

In the following we propose a revised version of the TOPALS model attempting to

overcome some of the drawbacks and offering an objective and elegant estimation pro-

cedure. We start from the idea proposed by De Beer (2012) in which a given mortality

age-pattern is the sum of a standard profile and a series of deviance which better suits

the data in hands. De Beer (2012) called his model TOPALS (tool for projecting age-

specific rates using linear splines). Schmertmann and Gonzaga (2016) already proven

the advantages of this model in estimating mortality age-pattern in small areas and they

embedded TOPALS in a Poisson settings. We move a step further by freeing TOPALS

from subjective choice of the model-arguments by means of P -splines (Eilers and Marx,

1996) and estimating the model within the classic Iteratively Re-Weighted Least-Squares

algorithm (McCullagh and Nelder, 1989; Nelder and Wedderburn, 1972). We thus called

it TOPALS+.

In the following we will first present the data. Afterwards choice and estimation of the

standard will be illustrated. The TOPALS+ model is then presented with its estimation

procedure and two applications on Chile and Venezuela dataset will be finally shown.
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2 Data and standard profile

One can relate living conditions gaps to diverse factors such as race, ethnicity, income,

education, occupation, among others. Factors do not necessarily correspond to spatial

categories. However, living conditions in Latin America highlight an unequal develop-

ment along spatial lines (Curto, 1993; Prata, 1992; Schkolnik and Chackiel, 1997). The

rapid urbanization process in lockstep with continuous metropolization (Rodŕıguez and

Cunha, 2009b) has created important differences between highly concentrated and dis-

persed population areas (Beyer, 1967; Cohen, 2006; Montgomery et al., 2003). In this

sense, the best possible age-pattern that hold similarities in terms of urbanization levels

with the sub-populations under analysis is preferable, regardless of the proximity or their

correspondence to the same political-administrative unit.

Working in a relational model framework, we thus decide to consider as standard

age-pattern the mortality pattern for the whole group of regions which share a similar

urbanization level.

For illustrative purposes, we use data from Chile and Venezuela. On one hand, number

of births and deaths counts used in this study come from the national vital statistics sys-

tems. On the other, population at risk is taken from national statistics institutes estima-

tions based on the latest census round available. Previous assessments of the vital statistic

system in both countries pointed out an adequate data quality/coverage (Mikkelsen et al.,

2015).

Specifically, we focused on Minor Administrative Divisions (MIAD) in Venezuela (Mu-

nicipios) and Chile (Comunas) in 2000 whose urban centers concentrate less than 20,000

inhabitants. This type of classification based on number of inhabitants in cities is conven-

tionally performed in comparative studies, and it guarantees urban condition as bench-

mark (Rodŕıguez and Cunha, 2009a; Rodŕıguez and Villa, 1998).

In the following, we thus aim to estimate mortality age-patterns for 182 Venezuelan

(total=335) and 222 Chilean MIADs (total=342). These MIADs gathered 15.4% and

20.8% of the national population, in Chile and Venezuela, respectively. We use data from

age 0 to the last open-aged group 80+.

Formally, the whole mortality data are deaths and exposures arranged in two m × n
matrices, D = (dij) and E = (eij). Rows are classified by age at death, a, m × 1.

Columns indexed by j identify the n Municipios (or Comunas) belonging to the same

group in terms of urbanization level.

We assume that the number of deaths dij at age i in Municipio (or Comuna) j is

Poisson distributed with mean µij eij (Brillinger, 1986):

dij ∼ P(eij µij) . (1)
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The value of µij is commonly named force of mortality and its estimation is the object

of all mortality models. In our framework we will treat each Municipio (or Comuna)

independently, although all of them will be related to a standard mortality shape.

Specifically standard mortality data are the m × 1 vectors of deaths and exposures

equal to the sum over j of the previous matrices:

ds = D 1n = (dsi =
∑
j

dij) and es = E 1n = (esi =
∑
j

eij) ,

where 1n is a n × 1 matrix of ones. Poisson assumption in (1) holds for the standard

deaths and exposures, too: ds ∼ P(µs ∗es). The symbol ∗ denotes element-wise product.

Instead of relating, in a direct manner, our subnational data to the observed standard

mortality pattern, we first smooth µs. In this way, in further analysis, we do not carry

out all random fluctuations which are present in the overall standard mortality data. We

achieve smoothness by a P -spline approach. For further details about this model see

the seminal and the review papers by Eilers and Marx (1996) and Eilers et al. (2015),

respectively. In few words, we model the logarithm of the force of mortality as follows:

ln(µs) = ηs = Bαs ,

whereB is a m×k matrix of B-splines (de Boor, 1978) and αs are k associated coefficients.

One of the advantage of this approach lays in its estimation procedure which simply

translates in a penalized version of the Iteratively Re-Weighted Least-Squares (IRWLS)

commonly used for Generalized Linear Models (McCullagh and Nelder, 1989; Nelder and

Wedderburn, 1972). See next section.

3 The TOPALS+ model

Following the reasoning behind the TOPALS model (De Beer, 2012), we decide to model

subnational mortality data as the sum of the standard mortality age-pattern and a set of

deviance. Following Schmertmann and Gonzaga (2016), we embed TOPALS in a Poisson

framework. For a given Municipio (or Comuna) j, we model the log-mortality as follows

ln(µ) = η = ηs + γ , (2)

where the vector γ = (γi) denote the difference between the standard mortality pattern

and the underlying force of mortality at a subnational level. Dealing with small data,

we cannot obtain reasonable outcomes by simply dividing observed death rates by the

smooth standard force of mortality. We thus decide to assume smoothness of the vector

γ. As in the estimation for the standard age-pattern, we describe the vector γ as the
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linear combination of equally-spaced B-splines and associated coefficients:

γ = Bα . (3)

Instead of subjectively selecting number and/or the location of the k B-splines with

respect to age a, we emulate the P -spline approach in this new setting. We take a

rich number of B-splines over the domain (i.e. age) and simultaneously we penalize the

differences of the associated coefficients in order to achieve smoothness of the estimated

γ.

As mentioned, P -splines can be estimated by penalized an IRWSL algorithm. Here

we decide to briefly present this procedure to underline the simplicity of the algorithm

with respect to the model (2). In formulas, we solve the following system of equations:

(B′WB + P )α = BWz (4)

where, as in the GLM, W = diag(µ∗e) and z = d−µ∗e
µ∗e +η. The additional penalty term

measures the roughness of the coefficients by first-order differences tuned by a smoothing

parameter λ:

P = λ∆′∆ . (5)

The matrix of differences ∆ are m× (m− 2) matrix which can be simply constructed in

a software as R (R Development Core Team, 2018). See appendix.

When λ is equal to 0, the model reduces to a simple Poisson-GLM with B-splines

as regressors and the vector of γ will theoretically be a curve with k degree-of-freedom.

The larger the λ, the smoother will be the series of α and, consequently, the estimated

γ. Optimal value of λ can be selected by Bayesian Information Criterion (BIC, Schwarz,

1978).

The BIC is a common tool for model selection and it corrects the log-likelihood of a

fitted model for the effective dimension. The expression for BIC is given by

BIC(λ) = DEV + ln(m) ED (6)

where DEV denotes the deviance which measures the goodness-of-fit of the model. The

other term ED represents the effective dimension which is the correspondent concept of

number of parameters in a smoothing context.

It is noteworthy that number of B-splines is negligible for the whole process as long as

we have a sufficiently large k to describe all eventual fluctuations in the data. Smoothness

will be enforced only by P by tuning λ. Degree and location of B-splines are also not

important for the final outcome. Here we use equally-spaced cubic B-splines. Finally the

degree of differences in ∆ indicates the “prior” function achieved when λ is extremely
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large. By selecting a first-order differences, we implicitly assume a constant γ model as

“ultimate smooth” function. In other words, whenever subnational mortality data cannot

provide enough information for a specific age-pattern, the model will tend to select η as

the sum of standard mortality and an optimal constant value, leading to a proportional

hazard framework. Conversely, relatively larger population may depart from ηs in a

flexible manner, if data required so.

Being in a regression setting, we can easily compute the standard errors for γ and

consequently for η from the objects in(4) after convergence. In formula the variance of γ

is given by:

V ar(γ) = B (B′WB + P )−1B′ (7)

Therefore the square-root of the diagonal of (7) provides directly standard errors to build

confidence intervals.

In the appendix we provide a small excerpt of the R code used to estimate the system

of equations in (4), standard errors for the fitted values and BIC.

4 Applications

Among the 222 Comunas in Chile and the 182 Municipios in Venezuela, we illustrate

our approach showing outcomes from 3 different MIADs. We select these regions as

representatives of different sample sizes. Specifically, we show results on a really small, a

medium size and a relatively large MIAD in both countries. See Figure 1

In this long abstract, we focus on the methodological aspects of the study. However,

for the final paper, we plan to deeply study the differences among different Chilean and

Venezuelan MIADs providing insights for a better understanding of subnational mortality

inequalities in these countries.
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Figure 1: Actual death rates and fitted values from TOPALS+ with 95% confidence
intervals (in blue). We also show estimates and confidence intervals for the deviation
vector γ. Standard age-pattern (ηs) is depicted in red. Three Comunas in Chile (top
panels) and three Municipios in Venezuela (bottom panel). The values denoted by d and
e presents the total number of deaths and population at risk for each subnational dataset.
Administrative number and selected λ are given in the titles.
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168–172.

Queiroz, B, ., E. Lima, F. Freire, and M. Gonzaga (2013). Adult mortality estimates for

small areas in Brazil, 19802010: a methodological approach. The Lancet 381, S120.

R Development Core Team (2018). R: A Language and Environment for Statistical Com-

puting. Vienna, Austria: R Foundation for Statistical Computing.
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Appendix: Software considerations

In this appendix we outline the snippets for estimating the TOPALS+ as presented in

Section 3. We work in R (R Development Core Team, 2018) because of its widespread

use, but the following code should be easily understood by someone who is unfamiliar

with this language, if the following notation is known.

The symbol <- is an assignment statement, an asterisk, *, means element-by-element

multiplication, %*% means matrix multiplication, t() means transpose and solve() es-

timates a generic least square model, i.e. one would write x <- solve(A, b) to solve

A · x = b for x, where b can be either a vector or a matrix.
We assume that standard log-mortality is given over m ages and assigned to an object

called etaS.hat. Then we start to construct the B-splines basis over the vector of age a

of length m by using the routine MortSmooth bbase() in the library MortalitySmooth:

B <- MortSmooth_bbase(x=a, xmin=min(a), xmax=max(a), ndx=20, deg=3)

k <- ncol(B)

In this example the number of B-splines will be equal to k = 23.
Given a smoothing parameter lambda, we can then construct our penalty term P as

in (5):

Delta <- diff(diag(k), diff=1)

tDeltaDelta <- t(Delta)%*%Delta

P <- lambda * tDeltaDelta

Starting values for γ (gamma in R) are not crucial here. However we assume that
standard mortality is equal to the subnational mortality pattern: ηs = η ⇒ γ = 0

gamma <- rep(0,m)

We now start updating gamma following the penalized IRWLS presented in (4):

## log-mortality

eta <- etaS.hat + gamma

## force of mortality

mu <- exp(eta)

## Poisson expected values

e.mu <- e*mu

## diagonal Poisson weights

W <- diag(c(e.mu))

## working-response

z <- (d - e.mu)/e.mu + eta

## right-hand-side of IRWLS

tBWB <- t(B) %*% W %*% B

## adding penalty term

tBWBpP <- tBWB + P

## left-hend-side of IRWLS
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tBWz <- t(B) %*% W %*% z

## estimating alpha

alpha <- solve(tBWBpP, tBWz)

## old gamma

gamma.old <- gamma

## new gamma

gamma <- B %*% alpha

The previous lines are repeated in a for-loop until two successive vectors of gamma do
not differ much. For instance, we can break the loop when the following object

dgamma <- max(abs((gamma.old - gamma)/abs(gamma.old)))

is smaller than 10−6. Commonly a handful of iterations is needed to achieve convergence.
As explained λ needs to be optimize based on a objective criterion such as BIC which

could be easily computed as follows:

DEV <- 2 * sum(d * log(d/mu))

ED <- sum(diag(solve(tBWBpP, tBWB)))

BIC <- DEV + log(m)*ED

One can compute BIC over a series of λ and check for which value is minimized.
Standard errors for γ and consequently for η can be computed as explained in (7):

V <- solve(tBWBpP)

Vs <- B%*%V%*%t(B)

se <- sqrt(diag(Vs.eta))


