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Abstract

For decades, demographers have estimated fertility rates in Brazil using indirect demographic tech-
niques. More recently, scholars have challenged the results of these techniques. This issue remains
unsolved and there has been significant disagreement about what the levels of fertility for the past
decades are, particularly for subnational levels. This paper proposes a Bayesian hierarchical method
that combines different estimates of fertility and completeness of registered births, which are, in turn,
confronted with other information, such as census coverage and infant mortality, to check for consistency.
Application for Brazil in the years 1991, 2000 and 2010 shows that estimates resulting from this method
have lower variability than the initial estimates. Furthermore, results seem to correct for some biases in
the initial estimates. This is a promising approach that could be applied in a variety of contexts, and is
particularly useful for regions with incomplete vital statistics systems. The proposed Bayesian method
has the advantage of being flexible enough to allow fertility estimation based on independent information
of either fertility rates, completeness of registered births, or the combination of both.
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1 Introduction
For decades, demographers have estimated fertility rates in Brazil using indirect demographic tech-

niques. Even though the limitations of these methods have been widely known, the lack of alternative
data sources have led to a general consensus that these estimates reasonably describe the overall levels
and trends in fertility (Berquó and Cavenaghi, 2014; Borges and Silva, 2015; Carvalho, 1982). More
recently, with the continuous decline of fertility levels and change in the age schedule, in addition to a
greater availability of alternative data sources due to the improvement of vital registration systems, schol-
ars have challenged the results of these techniques (Carvalho, Gonçalves, and Silva, 2017; Castanheira
and Kohler, 2015).

This issue remains unsolved and there has been significant disagreement about what the levels of
fertility for the past decades are, particularly for subnational levels. Fertility estimates using different
methods and data sources have led to different results. Indirect demographic methods have several
limitation, but vital registration systems in Brazil are also limited. Even though vital registration
systems have improved substantially oven in the last years, there are still a fair amount of births that
are not registered, particularly in the less developed regions, which undermines their use without any
adjustment.

This paper proposes a Bayesian hierarchical method that combines different estimates of fertility and
completeness of registered births, which are, in turn, confronted with other information, such as census
coverage and infant mortality, to check for consistency.

The results of this method provide a range of plausible values of the Total Fertility Rates (TFR).
In addition to provide more precise estimates, this method also indicates which estimates are more
implausible so that their results should be interpreted carefully.

Probabilistic approaches have been used to estimate fertility and mortality for contexts with incom-
plete vital registration systems. Alkema et al., (2012) and Liu and Raftery, (2017) developed methods
to incorporate the uncertainty of past Total Fertility Rates (TFR) by using a method for estimating the
bias and variance of different sources of data with varying data quality, mostly censuses and surveys.
These approaches take into account sampling and non-sampling errors, which are evaluated through
comparison with official estimates.

The appeal of using Bayesian analysis in these contexts lies in its potential to overcome the challenges
of combining information from different sources and dealing with high stochastic variation, measurement
errors and lack of identifiability in the models.

2 Methods and Data

2.1 Method
Demographic events such as births are subject to random variation and may be assumed to follow a

Poisson distribution (Brillinger, 1986). Thus, the total number of births Bc women from cohort c (Kc)
have is Poisson distributed as follows:

Bc ∼ Poisson(Kc · fc) (1)

where fc is the age-specific fertility rate (ASFR) for cohort c.
To take underregistration of births into account, the number of registered births, Bobs

c , is modeled
using a binomial distribution:

Bobs
c ∼ Binomial(Bc, βc) (2)

where βc is the probability of a birth being reported, which in turn may be modeled by the conjugate
prior beta distribution. This mixture gives an algorithm for simulating from the beta-binomial: draw
from the prior distribution βc ∼ Beta(aBc , b

B
c ) and then draw Bobs

c ∼ Binomial(Bc, β) (Gelman et al.,
2013).

The models described below can be expressed hierarchically as:

Bobs
c ∼ Poisson(Kc · fc · βc) (3)

fc ∼ Gamma(afc , afc ) (4)

βc ∼ Beta(aBc , bBc ) (5)
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Fertility rates fc are often estimated by using information collected in surveys and censuses about
fertility ((UN, 1983, chapter 2), (Moultrie, 2013)). Data about completeness of registered births are
estimated directly, e.g. by surveys using capture and recapture methods.

A Bayesian approach is a natural choice to deal with this kind of problem, since identification problems
arise from (3), since there is a range of values of Kc, fc and βc that maximizes the likelihood. In other
words, the likelihood that derives from (3) only allows inference about the product (Kc · fc · βc), and
gives no possibility to estimate the parameters Kc, fc and βc individually, which are ultimately the
measures of interest. The advantage of this Bayesian setup is that it is flexible enough to allow fertility
estimation based on independent information of either fertility rates, completeness of registered births,
or the combination of both.

It is often the case that the population at risk, Kc is taken as known. Census data are normally used
as a proxy of the true population, which is a very strong assumption. The model proposed here relaxes
this assumption by modeling fertility jointly with population counts, which is discussed below.

Demographic censuses are used for many purposes, serving as denominator of several rates, including
fertility rates. Censuses, however, are not perfect and often presents coverage and quality problems.
Census populations are usually smaller than the true population, meaning that census undercount exceeds
overcount. The census counts Kobs

c could then be modeled as a binomial distribution:

Kobs
c ∼ Binomial(Kc, κc) (6)

where Kc is the true but unobserved population and κc is the census coverage for cohort c.
Even though the most common use of the binomial distribution is to estimate the probability of

success κc given the number of successes Kobs
c in a series of experiments Kc, statisticians have also

tried to make inference about the true but unobserved parameter number of trials (Kc). This issue is
often called the “binomial n problem” and has been also addressed in the context of estimating total
population through capture and recapture models in wildlife (Otis et al., 1978) and human populations
(Wolter, 1986).

In human populations, Kobs
c normally comes from censuses and κc and Kc are parameters to be

estimated. The Post-Enumeration Survey (PES) is the natural data source to model κc in equation 6.
IBGE has carried out PES in Brazil since the 1970 Census. Information about Kc is much harder to
obtain.

The binomial model is limited because it contains only one free parameter and the variance is deter-
mined by the mean. When estimating census counts, for example, both moments are calculated from the
coverage estimation of the PES. More importantly, the model in equation 6 only accounts for random
sampling errors. Sampling errors in the PES are relatively easy to control and quantify and depend
mostly on the sample size. This tends not to be a problem for large population groups, as those used
in this study. With increases in the sample sizes of the PES, sampling errors have been dominated by
uncertainties due to systematic non-sampling errors. Non-sampling errors are harder to identify and
measure and arise from many sources, such as correlation bias, processing and matching errors, among
others (Wachter and Freedman, 2000) . Freedman and Wachter, (2003) suggest that large PES sample
sizes not only increase the relative importance of non-sampling errors, but also make them more prob-
lematic, since bigger samples are harder to manage so that systematic errors are made more difficult to
control and measure.

To take these issues into account, an over-dispersed version of the binomial distribution is required.
In a Bayesian framework, the most used one is the beta-binomial distribution, where the probabilities of
success, in this case κc, follow a beta distribution. The beta distribution is defined in the interval [0, 1]
and parametrized by two shape parameters, aKc and bKc :

κc ∼ Beta(aKc , bKc ) (7)

A conceptual difficulty with Bayesian analysis in the “binomial n problem” is to find sufficiently flexible
and tractable family of prior distributions for the discrete parameter “n”, in this case Kc (DasGupta and
Rubin, 2005; Raftery, 1988). This has also some practical problems, since some statistical programs
and modeling languages do not perform inference for discrete unknown parameters and these discrete
parameter models need to be re-expressed as mixture models with continuous parameters (Team, 2017).

A natural alternative to overcome these difficulties is to model population counts with a Poisson
distribution, which captures a feature often observed in count data, that is the observation error increases
with the population size. More precisely, in the Poisson distribution, the variance is equal to the mean.
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Thus, the true population counts Kc are assumed to follow a Poisson distribution with rate λc:

Kc ∼ Poisson(λc) (8)

As previously mentioned, prior information on λc is much harder to obtain, and a non-informative
prior on this quantity is often required. This paper uses an improper uniform prior a for λc, which leads
to a proper prior for Kobs

c .
The distributions described above (6, 7, 8) lead the following hierarchical structure:

Kobs
c ∼ Poisson(λc · κc) (9)

λc ∝ 1 (10)

κc ∼ Beta(aKc , bKc ) (11)

The posterior distribution of equation 9 results from the combination of the likelihood for Kobs
c and

the priors for κc and λc. The resulting posterior distribution for Kc provides information about the
plausibility of different values for the total population given the observed data and the prior knowledge
about these parameters.

Figure 1 shows the summary of the model. The registered birth counts, Bobs
c , are modeled based on

likelihood and prior information about coverage of census (κc), completeness of registered births (βc)
and fertility rates (fc). If there is no prior information about either fc or βc, non-informative priors
can be chosen. Notice that the population of children is modeled independently based on the observed
population in the census (Kobs

0 ) and census coverage of this group (κc). It also uses information from
fertility (fc), population of women at reproductive ages (Kc) and survival (S0).

Population Children Population Fertility

κc ∼ Beta(aKc , bKc ) κ0 ∼ Beta(aK0 , bK0 )

λc ∝ 1 λ0 ∝ 1

Kc ∼ Poisson(λc) K0 ∼ Poisson(λ0)

Kobs
0 ∼ Poisson(K0 · κ0) fc ∼ Gamma(afc , afc )

Kobs
c ∼ Poisson(Kc · κc) K0 =

∑49
c=15Kc · fc · S0 βc ∼ Beta(aBc , bBc )

Bobs
c ∼ Poisson(Kc · fc · βc)

Figure 1: Diagram of the the relationship between likelihood, priors and fertility and population models

2.2 Data
The observed population (Kobs

c ) of women at reproductive ages and children under age one comes
from the 1991, 2000 and 2010 censuses carried out in Brazil. Prior information for the census coverage
by age group (κc) estimates come from the PES of the 1991 and 2000 censuses. Since de 2010 PES has
not been published, results for the 2000 PES have been used instead. The mean estimate of κc for 2000
is the same as that for 2010, but a higher variance was assigned to the 2010 estimate to take into account
greater uncertainty.

Observed birth counts (Bobs
c ) come from the Vital Statistics System produced by the Ministry of

Health, the Information System on Live births (SINASC) and the prior on the completeness of registered
births (βc) is based on the estimates calculated by RIPSA, (2012).
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Total Fertility Rates (TFR) come from a variety of data sources, which use different estimation
methods 1.

2.3 Estimating prior distributions
This paper uses the methods of moments and percentiles to approximate distributions that represent

the prior information about the parameters TFR and βc, κc and κ0. The proportion of the TFR for
each age group is assumed to be the same for the different estimates. The birth completeness βc is also
assumed to be constant across age groups.

2.4 Simulating the posterior distribution
The model was fitted using the statistical softwares R and Stan. Samples from the posterior dis-

tributions of the parameters were draw via a Markov Chain Monte Carlo (MCMC) algorithm. More
specifically, Stan uses the Hamiltonian Monte Carlo (HMC) algorithm to explore the target distribution.
The HMC algorithm tends to explore the posterior distribution in a more efficient way. Efficiency in
this context means that it requires fewer samples to describe the posterior distributions. HMC gains
efficiency by reducing randomness when moving through the parameter space and exploiting knowledge
of the target distribution. A practical advantage of the HMC algorithm is that, unlike Gibbs sampling
and the Metroppolis algorithm, it makes easier to identify problems and divergences when sampling from
the posterior (Carpenter et al., 2017; McElreath, 2016; Team, 2017).

3 Preliminary Results
Figure 2 shows prior and posterior distributions for the Total Fertility Rates (TFR) and other pa-

rameters used in the model (βc, κc, κ0) for the years 1991, 2000 and 2010. The point estimates of the
TFR are also shown in the first panel.

The posterior distributions of the TFR are significantly different from the prior distributions. The
posteriors also show much lower variability than the priors. These results indicate that including addi-
tional information changes the previous knowledge about fertility rates, in addition to increase precision
of the estimates.

TFR estimates for 1991 have higher variance, since no information about completeness of registered
births (βc) was used. This is shown by the flat prior on this parameter for 1991. The only point estimate
that seems highly implausible is 2.30, which is much lower than range of the posterior distribution.

For 2000, the posterior distribution is shifted to the right, compared to the prior. There is very
low uncertainty in the fertility estimates for Brazil in 2000 and 95% of the posterior distribution is
concentrated between 2.20 and 2.40.

For 2010, the posterior distribution of the TFR is highly concentrated below the prior mean. This
indicates that the distribution of the TFR was shifted markedly to the left given the likelihood of
population and births counts, in addition to their respective coverage priors. For 2010, 95% of the
posterior distribution is concentrated between 1.67 and 1.86. This indicates that estimates of 1.6 and 1.9
seem highly implausible for Brazilian fertility in 2010. These two estimates result from the the question
about children born in the last year, both unadjusted and adjusted by using the P2/F2 Brass ratio factor.

3.1 Discussion
This abstract presents a novel method to reconcile and estimate Total Fertility Rates based on multiple

data sources. Results show that estimates have lower variability than the initial estimates. Furthermore,
the method seem to be able to adjust for biases in the initial estimates. This is a promising approach
that could be applied in a variety of contexts, but is particularly useful for regions with incomplete vital
statistics systems. The proposed Bayesian method has the advantage of being flexible enough to allow
fertility estimation based on independent information of either fertility rates, completeness of registered
births, or the combination of both.

1The final version of this paper will detail the sources and methods used for each point estimate.
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Total Fertility Rate − Brazil, 2010

TFR

D
en

si
ty

1.4 1.6 1.8 2.0 2.2

0
2

4
6

8
10

x xx xxxx

observed
prior
posterior

Completeness of registered births (βc)  − Brazil, 2010

βc

D
en

si
ty

0.80 0.85 0.90 0.95 1.00

0
5

10
15

20
25 prior

posterior

Undercount of women aged 15−49 (κc)  − Brazil, 2010

κc

D
en

si
ty

0.85 0.90 0.95 1.00

0
5

10
15

20
25

30
35 prior

posterior

Undercount of children under age 1 (κ0)  − Brazil, 2010

κ0

D
en

si
ty

0.80 0.85 0.90 0.95 1.00

0
5

10
15

20
25 prior

posterior

Figure 2: Prior and posterior distributions of the Total Fertility Rate (TFR), completeness of registered
births (βc) and adjustment factor of the census (κc, κ0)
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